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Abstract

This paper describes a novel heterodyne laser interferometer with no significant 

periodic nonlinearity for linear displacement measurements. Moreover, the optical 

configurations have the benefit of doubling the measurement resolution when 

compared to its respective traditional counterparts. Experimental results show no 

discernable periodic nonlinearity for a retro-reflector interferometer and plane mirror 

interferometer configurations with a noise level below 20 pm. The incoming laser 

beams of the interferometers are achieved by utilizing two single mode optical fibers. 

To determine the stability of the optical fiber couplers a fiber delivery prototype was 

also built and tested.

1 Introduction

Eliminating periodic nonlinearity in heterodyne laser interferometry has been the 

subject of much research, which can be categorized as either algorithm methods [1] 

or two spatially separated beam interferometer configurations [2]. The reduction 

method algorithms ensure a periodic nonlinearity below 1 nm without changes to the 

interferometer configurations; however, they typically require a calibration period, a 

nominal velocity, and additional calculation time. Conversely, real time reductions 

can be implemented with modified interferometer setups using two spatially 

separated beams. The only limitation of these configurations is their special and often 

complicated configurations which limit their applicability in industrial fields. 

In this research, we propose two simple heterodyne interferometer configurations, 

with retroreflector and with plane mirror targets, with two spatially separated beams 

to eliminate the periodic nonlinearity. The optical resolution doubling allows for 
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simpler optical configurations while achieving the same optical resolution by 

increasing the number of beam paths in the interferometer.

2 A novel heterodyne laser interferometer without periodic nonlinearity

2.1 Basic concept

The interferometer, as shown in Fig.1(a), consists of a beam splitter (BS), a right 

angle prism (RAP) as the reference mirror, and a retro-reflector (RR) as the moving 

target. 
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Figure 1: Optical configuration of a novel heterodyne laser interferometer; (a) retro-
reflector and (b) plane mirror type.

Two parallel beams from the optical source (f1 and f2) travel to the BS and the 

reflected beams travel toward the RAP, which has line symmetry. The transmitted 

beam travels to the RR, which has point symmetry [3]. Then, the reference and 

measurement beams can be recombined by the BS to create an interference with 

opposite phase directions, detected by the photodetectors (PD1 and PD2). From the 

PD1 and PD2, the phase difference φ=8πΔL/λ (where ΔL is the displacement of the 

RR and λ is the wavelength of light), which results in an optical resolution of λ /4.

For the plane mirror applications, the two parallel beams are divided by a linear 

displacement beam splitter (LDBS) into two sets, reference beams and measurement 

beams as shown in Fig.1(b). Similar to a typical plane mirror interferometer, each set 

of beams has the double-path between a polarizing beam splitter (PBS) and mirrors. 

The measurement beams are reflected by a RR experiencing the point symmetry 

while the reference beams have the line symmetry with a RAP. The two sets of beams 

propagate back to the LDBS and are then recombined to make the heterodyne signals. 
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In this interferometer, the optical resolution is λ/8 because of the double-path 

interferometer setup.

2.2 Experimental results
To evaluate the periodic nonlinearity, the measured displacements were fitted with a 

second order polynomial and the difference between the measured displacements and 

fitted displacements was applied to a fast Fourier transform (FFT) to detect the 

periodicity [4]. Figure 2 presents the periodic nonlinearity of the both interferometer

types according to the fringe order in the FFT domain compared to the typical 

interferometers. As shown in Fig.2(a), the periodic nonlinearity in the retro-reflector 

interferometer was below the noise level, of approximately 20 pm, while the 

periodicity for the typical interferometer using a Zeeman laser was determined to be 

approximately 7 nm at the first fringe order. Similar to the retro-reflector 

interferometer case, no periodic nonlinearity was detected with the plane mirror 

configuration, while a commercial interferometer (E1826G, Agilent) has the first 

order nonlinearity of approximately 0.3 nm, see Fig.2(b). While no periodic 

nonlinearity is detectable with the proposed interferometer at half, first and second

fringe order, however, several peaks appeared in the Fig.2. Those peaks are caused by 

the residual vibration effects from the stage motion after averaging and resolution 

limitations of the phase measuring electronics.
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Figure 2: Periodic nonlinearity; (a) retro-reflector and (b) plane mirror type.

3 Prototype: fiber coupling module

For the next generation of beam delivering system, the fiber coupled interferometer 

module was designed with the basic concept of two spatially separated beams as 

depicted in Fig.3(a). Compared to the typical system using polarization maintaining 
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fibers, single mode fibers aligned with kinematic mounts were used for the beam 

delivery due to the polarization insensitivity. The position of the beam in plane was 

measured with a position sensitive detector (PSD) to evaluate the stability. Figure 

3(b) shows the stability test result and displacements during 2.7 hours. They were 1.5 

mrad and 100 nm for the PV values, respectively, mainly caused by the thermal 

expansion of the base steel plate. Improvements for the stability are still going on.
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Figure 3: Prototype of interferometer module for optical fiber delivery system; (a) the 
configuration and (b) stability test result with displacements.

4 Conclusion
In this paper, we described two simple heterodyne interferometer configurations

with two spatially separated beams to eliminate the periodic nonlinearity. In addition, 

the optical resolution was enhanced by a factor of two. The experimental results 

show the periodic nonlinearity was below the noise level of 20 pm. For industrial 

applications, a fiber delivered module was also considered and tested. 
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